(Randomized) Localized Model Order Reduction J

Kathrin Smetana (University of Twente)
March 24, 2020

ICERM Workshop “Algorithms for Dimension and Complexity
Reduction”

K Smetana (k.smetana@utwente.nl) Localized Model Order Reduction March 24, 2020 1/49



Collaborators

Andreas Buhr Anthony T Patera Julia SchleuR

(formerly University of Miinster) (MIT) (University of Miinster)

Lukas ter Maat Olivier Zahm

(University of Twente) (INRIA)

K Smetana (k.smetana@utwente.nl) Localized Model Order Reduction March 24, 2020 2 /49



Motivation

» Model order reduction ...
o ... allows to perform computations for many different configurations
(parameters, geometry,...) very fast
e ... without jeopardizing accuracy

» Topic of this talk: Localization and randomization facilitate (nearly)
real-time simulations of large-scale problems
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Projection-based model order reduction
Qutline

> Projection-based model order reduction in a nutshell

o Randomized error estimation

> Localized Model Order Reduction

o Constructing optimal local approximation spaces (in space)

e Approximating optimal local approximation spaces via random
sampling

e Generating quasi-optimal local approximation spaces in time by random
sampling
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Projection-based model order reduction

Parametrized Partial Differential Equation

» Parameter vector i € P; compact parameter set P — RF
» Parametrized PDE: Given any p € P, find u(u) € X, s.th.

A(w)u(p) = f(p) in X".

Q < R3: bounded domain with Lipschitz boundary 0Q
H} (Q)? = X = HY(Q)? (d = 1,2,3); X”: dual space
(

v

v

v

p) : X — X' inf-sup stable, continuous linear differential operator

v

A
f(u) : X — R: continuous linear form
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Projection-based model order reduction

Parametrized Partial Differential Equation

» Parameter vector € P; compact parameter set P — RF
» Parametrized PDE: Given any p € P, find u(pu) € X, s.th.

A(pu(p) = f(p) in X'

» High-dimensional discretization:

» Introduce high-dimensional FE space X — X with dim(X") = A/
(assume small discretization error)

» High-dimensional approximation: Given any x € P, find V(1) € XV,
s.th.
AN () = () in XV

> Issue: Require u’V (1) in real time and/or for many 1 € P.
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Projection-based model order reduction

Parametrized Partial Differential Equation

» Parameter vector € P; compact parameter set P — RF
» Parametrized PDE: Given any p € P, find u(pu) € X, s.th.

A(pu(p) = f(p) in X'

» High-dimensional discretization:

» Introduce high-dimensional FE space X — X with dim(X") = A/
(assume small discretization error)

» High-dimensional approximation: Given any x € P, find V(1) € XV,
s.th.
AN () = £(pn)  A(p) e RN F(p) e RV,

> Issue: Require t’V (1) in real time and/or for many p € P.
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Projection-based model order reduction

Projection-based model order reduction: key concept

» Exploit: vV (1) belongs to “solution
manifold” MY = {uN () | e P} < XN of
typically very low dimension

» Offline: Construct reduced space X" from
solutions vV (fi;), i =1,...,N
(e.g. by a Greedy algorithm, Proper
Orthogonal Decomposition,...)

» Online: Galerkin projection on X": Given any ;/* € P, find " (1*
s.th.
A )uM () = F(u¥) in (XM

ye XV,

._z@ uMp)
L wm EI-
[ o G A
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Projection-based model order reduction

Construction of reduced basis B via randomization

» First Goal: Given a matrix S € R™*" and an integer k find an
orthonormal matrix @ of rank k such that S ~ QQ*S.

» Approach:

> Draw k random vectors r; € R" (say standard Gaussian)

» Form sample vectors y; = Sr;e R™ j=1,... k.

» Orthonormalize yj — qj, j = 1,..., k and define Q = [q1, ..., q«]

> Result: If S has exactly rank k then g;, j = 1,..., k span the range of
S at high probability. But also in the general case q;, j =1,...,k
often perform nearly as good as the k leading left singular vectors of S

» Compute randomized SVD:
» Form C = Q*S which yields S ~ QC
» Compute SVD of of the small matrix C = UL V* and set B = QU

For a review see for instance [Halko, Martinsson, Tropp 2011]
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Projection-based model order reduction

Construction of reduced basis B via randomization

» First Goal: Given a matrix S € R™*" and an integer k find an
orthonormal matrix @ of rank k such that S ~ QQ*S.

» Approach:

» Draw k random vectors rj € R" (say standard Gaussian)

» Form sample vectors y; = Sr;e R™ j=1,... k.

» Orthonormalize yj — qj, j = 1,..., k and define Q = [q1, ..., q«]

> Result: If S has exactly rank k then q;, j = 1,..., k span the range of
S at high probability. But also in the general case q;, j = 1,...,k
often perform nearly as good as the k leading left singular vectors of S

» Compute randomized SVD:
» Form C = Q*S which yields S ~ QC
» Compute SVD of of the small matrix C = UXV* and set B = QU

Works also if S is not a data matrix but some linear map which is
approximately low rank
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Projection-based model order reduction

References for randomized construction of reduced models

v

Hochman et al 2014

Alla, Kutz 2015

Zahm, Nouy 2016

Balabanov, Nouy 2019, 2019

Cohen, Dahmen, DeVore, Nichols 2020
Saibaba 2020

v

v

v

v

v
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Projection-based model order reduction

A posteriori error estimation

> A posteriori error estimator is important both
e to construct reduced order models via the greedy algorithm
o to certify the approximation: how large is the error (in some Qol)?

Proposition (A posteriori error bound)

The error estimator AN(H) = Bua ()2 F (1) — A(p)uM ()| xrr with
Bre(p) < Bar(w) satisfies

X (1) N
| () — " 0)lx < Bu) < GEE1 () = ),

Apv,wy

Ivixlwlx

where Bpr(p) := inf sup Apv,w)

vonenr 5B VIxdwlx

and yy () = sup sup
veXN weXN

> Problem: Good estimate of stability constants often computationally
infeasible; using simply the residual may perform very poorly,
especially say for Helmholtz-type problems.
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Projection-based model order reduction
Qutline

» Projection-based model order reduction in a nutshell
e Randomized error estimation

» Localized Model Order Reduction

o Constructing optimal local approximation spaces (in space)

e Approximating optimal local approximation spaces via random
sampling

e Generating quasi-optimal local approximation spaces in time by random
sampling

References:
> KS, Zahm, Patera, Randomized residual-based error estimators for parametrized
equations. SIAM J. Sci. Comput., 2019.
> KS, Zahm, Randomized residual-based error estimators for the proper generalized
decomposition approximation of parametrized problems, Internat. J. Numer.
Methods Engrg., to appear, 2020.
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Randomized a posteriori error estimation

References for randomization within error estimation

» Cao, Petzold 2004, Homescu, Petzold, Serban 2005

» Drohmann, Carlberg 2015, Trehan, Carlberg, and Durlofsky 2017
» Manzoni, Pagani, Lassila 2016

» Janon, Nodet, Prieur 2016

» Zahm, Nouy 2016

» Buhr, KS 2018

> Balabanov, Nouy 2019

> Eigel, Schneider, Trunschke, Wolf 2020
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Randomized a posteriori error estimation ECEIPAVISGVETTT]

Randomized a posteriori error estimation

» Goal: Develop a posteriori error estimator for model order reduction
that does not contain constants whose estimation is expensive (avoid
estimating inf-sup constant and thus improve effectivity of estimator)

» Setting: We query a finite number of parameters for which we want to
estimate the approximation error; allows computing statistics in UQ

» Approach: Exploit concentration inequalities:

Proposition (Concentration inequality, Johnson-Lindenstrauss)

Choose rows of matrix ® € RK*N say as K independent copies of standard
Gaussian random vectors scaled by 1/ VK and let S « RV be a finite set.
Moreover, assume K > (C(z)/e?) log(#S/3). Then we have

P{1-o)lx—ylz<[ox—oyli < (1 +e)lx—yl3 Vx,yeS}>1-4.

v

see for instance [Boucheron, Lugosi, Massart 2012], [Vershynin 2018]
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Randomized a posteriori error estimation Norm estimate

Assumptions on random vector
» Z € RN random vector such that
Iv[E =vTEv =E((ZTv)?) vveRV,

where ¥ is matrix e.g. associated with H'- or L2-inner product or a
quantity of interest

= (ZTv)? is an unbiased estimator of ||v|2
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Randomized a posteriori error estimation Norm estimate

Assumptions on random vector

» Z € RV: random vector such that
Iv[E =vTEv =E((ZTv)?) vveRV,
where ¥ is matrix e.g. associated with H'- or L2-inner product or a
quantity of interest

= (ZTv)? is an unbiased estimator of ||v|2

» For simplicity: Assume Z ~ N (0,X) is a Gaussian vector with zero
mean and covariance matrix ¥
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Randomized a posteriori error estimation Norm estimate

Assumptions on random vector

» Z € RV: random vector such that
Iv[E =vTEv =E((ZTv)?) vveRV,
where ¥ is matrix e.g. associated with H'- or L2-inner product or a
quantity of interest

= (ZTv)? is an unbiased estimator of ||v|2

» For simplicity: Assume Z ~ N (0,X) is a Gaussian vector with zero
mean and covariance matrix ¥

» Z1,...,Zk: K independent copies of Z
» Consider the following (unbiased) Monte-Carlo estimator of |v|Z

1 i
2 (ZiTV)z-
K i=1
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Randomized a posteriori error estimation Norm estimate

Proposition (Concentration inequality (KS, Zahm, Patera 2019))

Given a finite set of parameters S = {1, ...,us} < P, a failure probability
0<d<1l weR, w> /e, we have for

- log(#S) + log(671)
- log(w/v/e)

that

le()lE 1<
P{T Sk

(Z" e(u))? < w?le(u)lE, Vu,e 3} >1-0.
i=1

» chi-squared distribution

» concentration around 1 (that
means error estimator has
close to perfect effectivity 1)

0 1 2 3
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Randomized a posteriori error estimation Norm estimate

Proposition (Concentration inequality (KS, Zahm, Patera 2019))

Given a finite set of parameters S = {yu1,...,us} < P, a failure probability
0<d<1 weR, w> /e, we have for

log(#S) + log(671)
K> log(w/v/e) that

K
"
p{’ DlE 2 ? < w?e(n)I2, VNJGS}>1_5’

w=2 w=3 w=4 w=5 w=10
#S =1 24 8 6 5 3
#S8 =100 48 16 11 9 6
#S = 1000 60 20 13 11 7
#S = 10° 96 31 21 17 11

Table: Values for K that guarantee (1) for all uj € S with § = 1072
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Randomized a posteriori error estimation Norm estimate

Proposition (Concentration inequality (KS, Zahm, Patera 2019))

Given a finite set of parameters S = {1, ...,us} < P, a failure probability
0<d<1l weR, w> /e, we have for

- log(#S) + log(671)
log(w/v/e)

K
p{' s 2 < w?e(u))|2, Vuj€5}>1—5-

that

w2

v

1/2

Define A(u) := (% Z,Kzl(Z,TQ(N))z)

1/2

Problem: estimator A(u) = (% SE (2T (N () — gN(W)))Z)
involves high-dimensional finite element solution

== Computationally infeasible in the online stage
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Randomized a posteriori error estimation A posteriori error estimation

A fast-to-evaluate randomized error estimator

» Exploit error residual relationship

ZTe(n) = ZTA(w) M (f (1) — A(w)uM (1) = (A(w) "7 Z) T r(p)

g

residual r(p):= dual problem
> Define solutions of dual problems with random right-hand sides Z;:
YN (p) = A" Z;
» Approximation of the dual solutions via model order reduction:

yj.\/(u) ~ Z;Vd“(#) eYc xV, Y dual reduced space.

=

» Define fast-to-evaluate randomized error estimator

1/2
ANdu = (K Z Ndu ))2)

[m] [l = =
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Randomized a posteriori error estimation A posteriori error estimation

A fast-to-evaluate randomized error estimator

Proposition

Choose S € N in the offline stage. Then, in the online stage for any given
w > /e and 6 > 0 we have for S different parameters values pj, j =1,...,5 in a
finite parameter set S = {u1, ..., us} and

log($) + log(6~") (1S v
S ) that AN (p;) 1= (? P % (MJ)TL(MJ))2>

i=1
satisfies

P{ (aw) TAN (1) < eyl < (aw) AN (), pyeS,} =15,

e om0 S00) o1

where

v
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Randomized a posteriori error estimation Numerical Experiments

Numerical experiments: acoustics in 2D

» Consider on Q = (0,1) x (0,1)

O U(X; 1) = 110y (X; ) — pau(x; 1) = £(x) in Q,
u(x;pu) =0 on the bottom,
Vu(x;pu)-n= on the sides,
K(p1)Vu(x; p) - n = cos(mx) on the top.
» me P =[0.2,1.2] x [10,50]
J(a.y) Reumemn o 50, Resonances

uuewnaN snosuabowoH
Homogeneous Neumann
I
@
S

02 04 06 08 1 1.2
H1

10
. 40
. ° Q
) 0
20
-5 10
0 0.5 1
xry

» Homogeneous Dirichlet

> high dimensional discretization: linear FE, h = 0.01 in each direction
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Randomized a posteriori error estimation Numerical Experiments

Histograms of effectivity AN /| ' (1) — u™ (1) (e

K =10 (w = 6.5)
tol =2
dim(Y) =21+7

K =20 (w=32)
tol =2

dim(Y) =28+ 8

tol = 1.5

K =20 (w=232)

dim(Y) =42+10

L L
1074 10° 10t

H "
10° 10"

107"

100

Figure: #8 = 10% Npimar = 20, g = 0.99, 100 realizations, vertical dashed lines:
1/w and w, grey area: 1/(tol w) and tol w, where a ~ tol, solid lines:

chi-squared distribution
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Localized Model Order Reduction
Qutline

» Projection-based model order reduction in a nutshell
e Randomized error estimation
» Localized Model Order Reduction

e Constructing optimal local approximation spaces (in space)

e Approximating optimal local approximation spaces via random
sampling

e Generating quasi-optimal local approximation spaces in time by random
sampling

References:
> Review: Buhr, lapichino, Ohlberger, Rave, Schindler, and KS. Localized model
reduction for parameterized problems. Invited book chapter in Handbook on
Model Order Reduction. Walter De Gruyter GmbH, Berlin, 2020; also on arXiv.
» KS, Patera, Optimal local approximation spaces for component-based static
condensation procedures, SIAM J. Sci. Comput., 2016.

K Smetana (k.smetana@utwente.nl) Localized Model Order Reduction March 24, 2020 16 / 49



Localized Model Order Reduction Motivation for localized model order reduction

Localized model order reduction

Limitations of standard model order reduction approach:

» Curse of parameter dimensionality: many parameters require
prohibitively large reduced spaces

» No topological flexibility (although geometric variation is possible)

» Possibly high computational costs in the offline stage
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Localized Model Order Reduction Motivation for localized model order reduction

Localized model order reduction

Limitations of standard model order reduction approach:

» Curse of parameter dimensionality: many parameters require
prohibitively large reduced spaces

» No topological flexibility (although geometric variation is possible)

» Possibly high computational costs in the offline stage
— Localized model order reduction

Further advantages:

» Allows to use different (sizes of) reduced spaces in different parts of
the domain (similar to hp-methods)

» (Local) changes of the PDE, the geometry in the online stage are
possible
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Localized Model Order Reduction Motivation for localized model order reduction

Construction of local reduced spaces, some references

» Existing approaches ...
o ... either provided a fast convergence but error analysis seems
challenging: [Eftang, Patera 13], [Martini, Rozza, Haasdonk 15], ...
e ... or came with a rigorous error analysis but slow convergence:
[Hetmaniuk, Lehoucq 10], [Jakobsson, Bengzon, Larson 11],
[Hetmaniuk, Klawonn 14], ...

[m] [l = =
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Localized Model Order Reduction Motivation for localized model order reduction

Construction of local reduced spaces, some references

» Existing approaches ...

o ... either provided a fast convergence but error analysis seems
challenging: [Eftang, Patera 13], [Martini, Rozza, Haasdonk 15], ...

e ... or came with a rigorous error analysis but slow convergence:
[Hetmaniuk, Lehoucq 10], [Jakobsson, Bengzon, Larson 11],
[Hetmaniuk, Klawonn 14], ...

> |dea: Use concepts from multiscale methods introduced in [Babuska,
Lipton 11], [Malqvist, Peterseim 14] that ...

o ... rely on the decay behavior of the solution of certain PDEs even for
rough coefficients

o ... and the compactness of certain operators thanks to the Caccioppoli
inequality (bounds energy norm of solutions of the PDE by L2-norm on
a larger domain)

= Yields superalgebraic convergence and rigorous error analysis
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LMOR: optimal approximation in space ReLGEIIELECS

Localized model order reduction

Challenges:

» We can only exploit that the global solution solves PDE locally

» But: No knowledge of the trace of the global solution on I',,;

= Infinite dimensional parameter space

I'p

K Smetana (k.smetana@utwente.nl)
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Challenges
Localized model order reduction

Challenges:
» We can only exploit that the global solution solves PDE locally
» But: No knowledge of the trace of the global solution on I',,;

== |Infinite dimensional parameter space

Idea:

» Restrict to space of functions that solve the PDE locally on Q for arbitrary
boundary conditions on T,

» Exploit that for those local solutions we have a very fast decay of higher
frequencies from Ty to Qi iy (— Caccioppoli inequality)

» yields optimal local approximation spaces in the sense of Kolmogorov

'y
I'p Tout| Q1 |Uin QQ Cout I'p

Iy

o = DA
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LMOR: optimal approximation in space ReLGEIIELECS

Optimal local approximation spaces

Definition (Kolmogorov n-width, optimal subspaces (Kolmogoroff 1936))

S, R Hilbert spaces, R": subspace of R, dmR" =n, T : S — R linear,
continuous operator. The Kolmogorov n-width is defined as

O L
dim R"=n nes CeRn HW”S

A subspace R" with dim R" < n, that satisfies

T —
dn(T(S); R) = sup inf 17() —dlr
2l

is called an optimal subspace.
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LMOR: optimal approximation in space Motivation

Motivation: separation of variables
» Consider Q = (—5,5) x (0,1)
—Au=0, in Q, @(X, 1) = @(X,O) =0.

> plus: arbitrary Dirichlet boundary conditions on I';.

Fout Fz'n Fout
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LMOR: optimal approximation in space Motivation

Motivation: separation of variables

» Consider Q = (—5,5) x (0,1)
du du

—Au=0, in Q, d—y(x, 1) = d—y(X,O) =0.

» plus: arbitrary Dirichlet boundary conditions on Io;.
> separation of variables: all harmonic functions on € have the form

o0
u(x,y) = aog + box + 2 cos(nmy)|a, cosh(nmx) + b, sinh(nmx)]

n=1

» Example: Prescribe cos(37my) on oyt and thus n = 3:

1

u(x,2/3)

o

n
N~

E;5 -4 -3 -2 -1 0 1 2 38 4 5
X
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LMOR: optimal approximation in space Motivation

Motivation: separation of variables

» Consider Q = (—5,5) x (0,1)

—Au=0, in Q, Z’;(X, 1) = Z;(X,O) =0.
> plus: arbitrary Dirichlet boundary conditions on I',;.
> separation of variables: all harmonic functions on Q have the form
o0
u(x,y) = aog + box + 2 cos(nmy)[an cosh(nmx) + b, sinh(nmx)]
n=1
= Extremely rapid and exponential decay of the cos-functions in the
interior of Q for higher n.
== Most harmonic extensions of the basis functions cos(nry),
n=0,...,00 are practically zero on I';,.
= A reduced space of very low dimension on [';, will already yield a very
good approximation!
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LMOR: optimal approximation in space Motivation

Motivation: separation of variables

» Consider Q = (—5,5) x (0,1)
d d
—Au=0, in Q, —u(x,l) = —U(X,O) =0.
dy dy
> plus: arbitrary Dirichlet boundary conditions on I';.
> separation of variables: all harmonic functions on Q have the form

0
u(x,y) = ao + box + Z cos(nmy)|a, cosh(nmx) + b, sinh(nmx)|

n=1

= Extremely rapid and exponential decay of the cos-functions in the
interior of Q for higher n.

Question: How can we generalize this idea?
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Construction of optimal local approximation spaces
The space of all local solutions of the PDE on 2

» Consider the space of all local solutions of the PDE! on Q

H = {we HY(Q) : with Aw =0 € X'}.

> global solution of the PDE restricted to Q2 lies in H!
> We are interested in u|r, or u|g, and thus introduce

R:={wlr,, weH} or R:={w|g,,
and S :={w|r,,., weH}

w e H},

'For theoretical purposes one needs to consider the quotient space 7 := H/ ker(A)
at certain instances.
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B \VTe) s 8T T2 B L RS SETEE. Construction of optimal local approximation spaces

Transfer operator

» We introduce a transfer operator

T:S—>R

» For w € H and thus w|r,, € S we define

T(W|rout) = W|rin or T(W|rout) = W|Qin'

'__’“
P
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S clbrinallee opr e onlpee
Transfer operator

» We introduce a transfer operator

T:S—>R

» For w € H and thus W‘rout € S we define
T(Wire,) == wir

. or
in

T(Wlr,) :

= WlQin
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S clbrinallee opr e onlpee
Transfer operator

» We introduce a transfer operator

T:5S5—>R

T(w

» For w € H and thus wir,, € S we define

rout) = erm

or

T(w

roul’) =

W‘Qin’
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B \VTe) s 8T T2 B L RS SETEE. Construction of optimal local approximation spaces

Transfer operator

> We introduce a transfer operator T : S — R
» For wlr,,, € S we define T(w|r,,,) := w|r, or T(w|r,,):=w|q,.
» T is compact thanks to the Caccioppoli inequality:

Lemma (Caccioppoli inequality for heat conduction)

Let k€ L™(Q) fulfill 0 < ko < k < K1 with constants kg, 1, define
X0 ={ve HY(Q),v|r,,, =0}, let ue X := {ve H(Q),Vv|r,, = g} satisfy

j/ﬁVu-Vv=0 Vv e XO. QL O | O*
Q

Then on Q* < Q** < Q with dist(0Q2*\0Q2, 0Q2**\02) > p > 0 there holds

©
kI Vul? dx < — || ul22(gx :
| F1vuP dx < Sl gungn
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Construction of optimal local approximation spaces
Transfer operator
» We introduce a transfer operator T : S — R

» For wlr,,, € S we define T(w|r,,,) := w|r, or T(w|r,,) = w|q,.
» T is compact thanks to the Caccioppoli inequality.

v

Introduce adjoint operator T* and consider the eigenvalue problem

T Tw|oyr = Aw|oye  for w e H.

Equivalent formulation: Find (¢, Aj) € (H,R") such that
( @J‘D/n Y W‘Din )R - AJ ( ('/Dj‘rout Y W’rout)s VW € HTDin - riﬂ7QiH

v
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B \VTe) s 8T T2 B L RS SETEE. Construction of optimal local approximation spaces

Transfer eigenvalue problem

Proposition (Transfer eigenvalue problem)

> @j and \j: eigenfunctions and eigenvalues of the transfer eigenvalue
problem: Find (¢;j, Aj) € (H,R*) such that

( @j|D,—,, ) W|Din )R = AJ ( 99j‘rout y W|rout)5 VWEH,D/H = rin;gzin

> List \j such that \y > Ay > ..., and \j — 0 as j — 0.

» The optimal space on [, or Q;, is given by

R" := Span{ﬁﬁp-/ "'>¢f1p}7 ¢jp - T90j|roun J = 1’ ey 1.

dn(T(S); R) =sup inf I7€—cle _ A Ant1

ges cerm ||¢E]ls
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LMOR: optimal approximation in space RWAW-IIIIR-IT gl XN |

A priori error bound

Proposition (A priori error bound (KS, Patera 2016))

u: (exact) solution,

u": continuous port reduced static condensation solution employing the
optimal port space R".

We have:

—r < G(Q) VA1,

where C1(S2) does neither depend on u nor on u".
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LMOR timal approximation in space Numerical Experiments

Numerical experiments for isotropic linear elasticity

cracked [-Beam, uniform Young's modulus E; = 1 in both components
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=
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Figure: eigenvalues A,
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Figure: component mesh
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LMOR: optimal approximation in space Numerical Experiments

Numerical experiments for isotropic linear elasticity

Stiffened plate — simplified model for ship stiffener

10° # =B =Ly =1 . .
) e-B=Ei=2 » E; =1in grey areas, i = 1,2

10 &\% e FE b Br o .o

DN W it o » E; = E/ € [1,20] varies in

red areas

10
10

-6

Figure: mesh in Q;
Figure: eigenvalues \;
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LMOR: optimal approximation in space Numerical Experiments

Numerical experiments for isotropic linear elasticity

Stiffened plate — simplified model for ship stiffener

100 # - =FE;=1
g -e-E = E} = 20 Ar———— . 8.752
1072 M E;=1,E;=20 e
w0 Bl =10,E5 =1 S
iy S S
N 0
10°
<10 Figure: plate under bending
107"
107"
14 ™ T 8.752
10—16 . I;
EREEFEET e [
Figure: eigenvalues ); Figure: stiffened plate under bending
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BV 0N S8 dT BN RET o TZOS T E R RS EISIS  Performance of the global approximation

Comparison with other reduced interface spaces

Solid beam, £ = Er = 12, g|r, = (0,0,0)7, glr. = (1,1,1)7

> Legendre polynomials:

10
components of the )
displacement are solutions of 3
scalar singular E
Sturm-Liouville problems =107
» Empirical port modes <10
. . |
constructed by a pairwise 210l
training algorithm [Eftang, R e
—&— empirical
Patera 2013] o Db
» spectral modes constructed 5 10 15 20 25 30 3%
by the spectral greed -
y P greecy Figure: [[|u" (1) — u™ ()| |o/I|u" ()] |

2
P; = [1,10] x [1,1] for pi: = (E;, E!)
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LMOR: optimal approximation in space Performance of the global approximation

Numerical experiments: shiploader?

Field: Von Mises (MPa)

200

|

3Results by company Akselos S.A.; KS has no financial interest in Akselos S.A.
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LMOR: optimal approximation in space Performance of the global approximation

Numerical experiments: shiploader?

e
!
Figure: shiploader shiploader with defect
» discretization with FEM: » size of reduced Schur
>20 millions of DOFs complement system: ~12 000
» size of Schur complement » simulation time with reduced
system: 349 000 port spaces: & 2 sec

3Results by company Akselos S.A.; KS has no financial interest in Akselos S.A.
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BV LO) ST aT B RET RS L R RSEICSSS  Approximating the transfer eigenvalue problem

Computing an approximation of the transfer eigenvalue problem

Transfer eigenvalue problem: Find (¢}, Aj) € (H,R") such that

( Th(spj|rout) Y Th(W‘rout) )R :)\J ( ¢j|rout Y W‘rout)s VWE%

H = { set of all local solutions of the PDE with arbitrary Dirichlet b. c. }

@ Introduce a FE discretization with Ny, degrees of freedom (DOFs) on
[out and N;, DOFs on [, or Qi

@ Solve for each basis function on [, the PDE locally
== number of required local solutions of the PDE scales with the

number of DOFs on I, and thus depends on the discretization
© Assemble and solve generalized eigenvalue problem

Lout Lin Cout an 1ﬂout
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BV LO) ST aT B RET RS L R RSEICSSS  Approximating the transfer eigenvalue problem

Computing an approximation of the transfer eigenvalue problem

Transfer eigenvalue problem: Find (¢}, Aj) € (H,R") such that

( Th(spj|rout) Y Th(W‘rout) )R :)\J ( ¢j|rout Y W‘rout)s VWE%

H = { set of all local solutions of the PDE with arbitrary Dirichlet b. c. }

@ Introduce a FE discretization with Ny, degrees of freedom (DOFs) on
[out and N;, DOFs on [, or Qi

@ Solve for each basis function on [, the PDE locally
== number of required local solutions of the PDE scales with the
number of DOFs on I, and thus depends on the discretization

© Assemble and solve generalized eigenvalue problem

Problem: For large number of DOFs on I',,; the approximation of the
transfer eigenvalue problem can be very/prohibitively expensive
especially in 3D

K Smetana (k.smetana@utwente.nl) Localized Model Order Reduction March 24, 2020 29 / 49



Randomized local model reduction (space)

Outline

> Projection-based model order reduction in a nutshell

o Randomized error estimation

> Localized Model Order Reduction

o Constructing optimal local approximation spaces (in space)

e Approximating optimal local approximation spaces via random
sampling

e Generating quasi-optimal local approximation spaces in time by random
sampling

Reference: Buhr, KS, Randomized Local Model Order Reduction, SIAM J. Sci.
Comput., 2018.
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Randomized local model reduction (space)

References on randomization in multiscale, domain
decomposition methods

v

Wang, Vouvakis 2015

Calo, Efendiev, Galvis, Li 2016

Owhadi 2015, 2017

Chen, Li, Lu, and Wright, arXiv:1801.06938; arXiv:1807.08848

v

v

v
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SELTETGIPECRETE N I EIREC ITGH G NEREIS) Y Randomized Linear Algebra

Approximating optimal local spaces with Randomized Linear Algebra*

> Prescribe random boundary conditions; in detail choose every
coeffcient of a FEM basis function on I, as a (mutually inde-
pendent) Gaussion random variable with zero mean and variance one

» Solve PDE for random boundary conditions numerically and store
evaluation of local solution of PDE u”|r, or u|q, .
> Define reduced space R/, ; as the span of n such evaluations uh\r,.n or

uh|Qin

Uout [y, Cout an Fout

“for a review see [Halko, Martinsson, Tropp 11]
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SELTETGIPECRETE N I EIREC ITGH G NEREIS) Y Randomized Linear Algebra

Approximating optimal local spaces with Randomized Linear Algebra*

> Prescribe random boundary conditions; in detail choose every
coeffcient of a FEM basis function on Iy, as a (mutually inde-
pendent) Gaussion random variable with zero mean and variance one

» Solve PDE for random boundary conditions numerically and store
evaluation of local solution of PDE u"|r. or uf|q, .

> Define reduced space R, , as the span of n such evaluations u”|r, or
Uh|Qin

Questions: What is the quality of such an approximation?

(How) can we determine the dimension of the reduced space for a given
tolerance?

“for a review see [Halko, Martinsson, Tropp 11]
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SELT LT TPECRETE N e IR TG H NEREIS) Y Probabilistic a priori error bound

Probalistic a priori error bound®

Proposition (A priori error bound (Buhr, KS 2018))

Under the above assumptions there holds for n,p > 2

p

. [ Thg —(|r \/n e/n+p v
E|sup inf > SIF g <1+ ) Py b
et Tels =) VA 2%

N C\m\/F+1

Optimal convergence rate achieved with transfer eigenvalue problem:

dn(T(S); R) = sup inf IT€—cllr _ o

¢es CERD “5“5

®based on results in [Halko, Martinsson, Tropp 11]
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SELT LT TPECRETE N e IR TG H NEREIS) Y Probabilistic a priori error bound

Probalistic a priori error bound®

Proposition (A priori error bound (Buhr, KS 2018))

Under the above assumptions there holds for n,p > 2

rand

E | sup inf 7HTh£7CHR < G <1+ ;ﬁ> Ay VIR Z)\'? -
EESh CGR"+P HgHS pil ”+1 2 j>n !

N C\/ﬁm

where
— AmaX(M ) )\max(M )
> Ch - \/)\miH(M:) /\min(MSS)
> (MR)ij = (¥j,vi)r, ¥i: FE basis functions
>

(Mg)ij = (¥j,vi)s, ¥i: FE basis functions
» p: oversampling parameter
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SELTETGTPECRETE N T BRI NELEIS) Y Adaptive randomized range finder algorithm

Probablistic a posteriori error bound®

Proposition (Probablistic a posteriori error bound (Buhr, KS 2018))

» {w :i=1,2,...,n}: standard Gaussian vectors

> Ds : RNew — Sh: (cp, . eni) — X0 X = Z, 4" civi, i« FE basis functions
Define

est (N, 0
A(ne, dgr) 1= Cest (71 1) max ( inf | T" Dsw®” CHR>
)\M.s i€l,...,nt \CER] .

Then there holds

M 1/2 .

Xmix The —
sup _inf M < A(ne, 6e) < | 7o Cett (Ne, O¢) sup _inf 77 = Clle
et <<Rima [Ells e cesn <Ry €5

with a probability of at least 1 — 6y;.

®Estimator extends results in [Halko, Martinsson, Tropp 11]; effectivity bound=new
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SELTETGTPECRETE N T BRI NELEIS) Y Adaptive randomized range finder algorithm

Adaptive randomized range finder’

> Input: Select tolerance tol, failure probability 0450l

» While A(n¢, d¢r) > tol

Generate random boundary values on [,,;

Apply transfer operator T" to random boundary conditions
Add new solution to R,

Orthonormalize solutions

Update a posteriori error estimator

h
» Output: R, such that supgcgninfegn % < tol with

rand rand

probability at least 1 — 0,/g0fair

"adapted from [Halko, Martinsson, Tropp 11]
K Smetana (k.smetana@utwente.nl) Localized Model Order Reduction March 24, 2020 34 / 49



Randomized local model reduction (space) [ENITIIIEIRENT Ty I

Numerical Experiments for analytic test problem

Numerical Experiments: interfaces

> local (oversampling) domain Q := (—1,1) x (0,1)
» Consider PDE: —Au =0in Q

> Goal: Construct reduced space on I,

1_‘out Fz‘n Fout

Figure: Q
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Numerical experiments
Heat conduction: —Au =00n Q = (—-1,1) x (0,1)

T T | — -
1 /E\ /o | 1+
0 | 0
1 | 1l

—2 L | — —2 L | —

0 0.5 1 0 0.5 1
X2 X2
Figure: optimal basis basis generated by randomized range

finder algorithm
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Numerical experiments
Heat conduction: —Au =00n Q = (—-1,1) x (0,1)

- max
-=--75 percentile
= * r T {——50 percentile
T«in 100 ewy 8. %o ---25 percentile
L] S W S
E’ 107105 ........... e
= e T o
g 10715
(o}
? 0 2 4 6 8 10 12

basis size n
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Numerical experiments
Heat conduction: —Au =00n Q= (-1,1) x (0,8)

CPU times

Properties of basis generation

Algorithm 2 | Scipy/ARPACK
(resulting) basis size n 39 39
operator evaluations 59 79
adjoint operator evaluations 0 79
execution time in s (without factorization) 20.4s 479 s

Table: CPU times; Target accuracy tol= 10~*, number of testvectors n; = 20,
failure probability daigofail = 10~'%; unknowns of corresponding problem 638,799
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Randomized local model reduction (space) [ENITIIIEIRENT Ty I

Numerical Experiments for a transfer operator with slowly
decaying singular values

Numerical Experiments: subdomains

» local (oversampling) domain Q := (—2,2) x (—0.25,0.25) x (—2,2)
» Consider PDE: linear elasticity in Q (isotropic, homogeneous)

» Goal: Construct reduced space on
Qjn = (—0.5,0.5) x (—0.25,0.25) x (—0.5,0.5)

Figure: Q\Q;,
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Numerical experiments
Linear elasticity on Q := (—2,2) x (—0.5,0.5) x (—2,2)

—= ng=D5
—n=10| ¢ 1073
——n; =20 fﬁ
—A— Ny = 40 {‘ 1076
——ny=80| =

rand
[y
o
w
E

i

a/|Th
= =
() o
=) —

1079 \\\\\\\\\
0 100 200 300 10+ 10° 107* 1078
n target accuracy tol

Figure: Convergence behavior of adaptive algorithm (left) and effectivity of a
posteriori error estimator A/||T" — Pge  T"| (right) for increasing number of test
vectors n;.
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Numerical experiments
Olimex Ab64: Maxwell's equation (results by Andreas Buhr)

» global discretization: about 65 million degrees of freedom
» 1120 subdomains
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Randomized local model reduction (space) [ENITIIIEIRENT Ty I

Error Estimator Decay

= 0] ]
3
=
] 100 [ ]
E:L“
Q.
| _
< 1072} :
~
g 10—4, N
E}
s
= ]_0—6— | | | | [
0 50 100 150 200
n
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Randomized local model reduction (space) [ENITIIIEIRENT Ty I

CPU timings
(on laptop)
| O assembly
600 |- O factorization
[ testvector generation
B basis generation
400 |- *
w0
~
[0}
£
i ! !L!L!! !ll L !! |
820 830 840 850

domain

[m] = = = Al
March 24, 2020 41 / 49
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Randomized local model reduction (time)
Outline

> Projection-based model order reduction in a nutshell

o Randomized error estimation

» Localized Model Order Reduction

e Constructing optimal local approximation spaces (in space)

e Approximating optimal local approximation spaces via random
sampling

e Generating quasi-optimal local approximation spaces in time by
random sampling

References:

> KS, SchleuB, Optimal local approximation spaces for parabolic problems, in
preparation.

> KS, ter Maat, Generating quasi-optimal local approximation spaces in time by
random sampling, in preparation.
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Randomized local model reduction (time)

Decay behavior of solutions of certain PDEs in time

» The solution space of certain system of ordinary/partial differential
equations in time is locally low-rank

o Consider

Oru — div(k(x,t)Vu) =0, in Dx(0,T),
u(x,t) =0o0n 0D, u(x,0) = up(x).

o There holds: |u(-,t)]12(py < e~ || 2(p).

> |dea: Exploit decay behavior to efficiently construct local reduced or
multiscale spaces in time.
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Randomized local model reduction (time)

A compact transfer operator for time-dependent problems

» Define transfer operator To_, s+ : L2(D) — H+ that solves PDE for
arbitrary initial conditions and evaluates corresponding solution in t*,
where

Hex = {w(,t*) € L*(D) : w solves PDE with w(-,0) € L*(D), f = 0}.

[m] [l = =
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Randomized local model reduction (time)

A compact transfer operator for time-dependent problems

» Define transfer operator To_, s+ : L?(D) — H,+ that solves PDE for
arbitrary initial conditions and evaluates corresponding solution in t*,
where

Hex = {w(,t*) € L*(D) : w solves PDE with w(-,0) € L*(D), f = 0}.

» Heat equation with rough coefficients: Tg_,++ is compact thanks to
the Caccioppoli inequality:

Proposition (Caccioppoli inequality in time (KS, terMaat 2020))

Let w satisfy the weak form of the heat equation with right-hand side
f = 0 and arbitrary initial conditions w(x,0) and let o € R with ¢ > 0.
Then, we have

/ 1
Jw(:, t*)H%Z(D)+HH’L2VWHL2((Q,T—Q).L2(D)) = EHW“%z(/,Lz(D))-
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Randomized local model reduction (time)

A compact transfer operator for time-dependent problems

» Define transfer operator To_, s+ : L?(D) — H,+ that solves PDE for
arbitrary initial conditions and evaluates corresponding solution in t*,
where

Hex = {w(,t*) € L*(D) : w solves PDE with w(-,0) € L*(D), f = 0}.

» Heat equation with rough coefficients: Tg_,++ is compact thanks to
the Caccioppoli inequality.

Proposition (Optimal approximation spaces (KS, terMaat 2020))

The optimal approximation space in H; is given by
Moy o= span{gl ... ¢f },  where ¢f = ToLmpl , j=1,...n,

and cpj?* eigenfunctions of the transfer eigenvalue problem: Find
(goj*,/\f*) € (Ho,R™") such that

t* o\t pE
(Tosexwj  TosexW)i2py = Aj (9 , W)izipy Yw e Ho.
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Randomized local model reduction (time)

Approximation of optimal spaces by random sampling

v

Apply To_, ¢+ to n mututally independent random initial conditions.

v

Start collecting snapshots after a certain amount of time steps to let
higher frequencies decay.

v

Add snapshots of simulation with prescribed initial condition wug for
few time steps to snapshot set.

» Apply SVD to collection of all snapshots to construct reduced space.
T
............ 4‘............................>
0 t
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Randomized local model reduction (time)

Approximation via random sampling for time-dependent data

» To capture time-dependent data start at different points in time

> Define transfer operator T, ., that solves PDE for arbitrary initial
conditions, arbitrary starting time t; and evaluates corresponding
solution in t;

K Smetana (k.smetana@utwente.nl) Localized Model Order Reduction March 24, 2020 45 / 49



Randomized local model reduction (time)

Approximation via random sampling for time-dependent data

» To capture time-dependent data start at different points in time

> Define transfer operator T, ., that solves PDE for arbitrary initial
conditions, arbitrary starting time t; and evaluates corresponding
solution in t;

> Theory for To_,x can directly be extended to Ty,
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Randomized local model reduction (time)

Approximation via random sampling for time-dependent data

» To capture time-dependent data start at different points in time

» Define transfer operator Tt that solves PDE for arbitrary initial
conditions, arbitrary starting time t; and evaluates corresponding
solution in t;

> Theory for To_,x can directly be extended to Ty,

» Choose n random points of time #;, i = 1,...,n and apply Ty, to a
random initial condition (mutually independent).

> Apply SVD to collection of all snapshots to construct reduced space.
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Randomized local model reduction (time)

Approximation via random sampling for time-dependent data

» To capture time-dependent data start at different points in time

» Define transfer operator Tt that solves PDE for arbitrary initial
conditions, arbitrary starting time t; and evaluates corresponding
solution in t;

> Theory for To_,x can directly be extended to Ty,

» Choose n random points of time #;, i = 1,...,n and apply Ty, to a
random initial condition (mutually independent).

> Apply SVD to collection of all snapshots to construct reduced space.

» Advantage: reduced models can be constructed in parallel

T0—>t* Ttl—ﬁfg Tt;3—>t4
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Randomized local model reduction (time)

Numerical experiments: Stove problem
» Q=(0,1) x (0,1), final time T =10
» Consider:

oru(x,y,t) — Au(x,y,t) = f(x,y,t) inQx(0,T),
u=0 ondQx(0,T),

4
u(x,y,0) = Z sin(kmx) sin(kmy).
k=2
» Use FEM with h = 0.01 in x- and y-direction, implicit Euler with 300
time steps
NGy V) fi(t)
—A(t)
=05 =05 ;
0
0 0.5 1 0 0.5 1 0 0.5 1 0 5 10

1 T T t
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Randomized local model reduction (time)

Numerical experiments: solution at different points of time

’ t=0 t=3.3
0
0 05 1
x
t-49667 t-83
0 05
x
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Randomized local model reduction (time)

Numerical experiments: error, singular values, random
starting points in time t;

Relative L-error over time oi/o1 fi(t)
0 e 10° 30
g ! -2
2 10 25
£ s 10’
2 10 ~ 106 20
2 g =
B % 10°® =15
CS -10 10-10
@ 10 1012 10
§ —randomized 1014 5
& — -standard 10—16
107° 0
0 T2 T 1 5 10 15 20 25 30 0 T2 T
t i t

» Consider 10 different random starting points
> Collecting snapshots between the 12th and 15th time step after t;

= Dimension of reduced space is 17
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Summary

» Randomized error estimators build on concentration inequalities for
Gaussian maps can provide
e ... a very accurate estimate of the error at high probability
o ... at low cost.

> Localized model order reduction: Exploit decay behavior of solutions
of certain PDEs to construct optimal local approximation spaces

» Randomized methods are well suited to approximate the range of maps
that are low-rank; Examples: local solution spaces in space or time
o Probabilistic a priori error bound/Numerical experiments for local
solution in space: convergence rate is only slightly worse compared to

the optimal rate (factor /n)
e required number of local solutions of PDE scale (roughly) with size of
the reduced space; Numerical experiments: faster than Lanczos
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Summary

» Randomized error estimators build on concentration inequalities for
Gaussian maps can provide
e ... a very accurate estimate of the error at high probability
o ... at low cost.

> Localized model order reduction: Exploit decay behavior of solutions
of certain PDEs to construct optimal local approximation spaces

» Randomized methods are well suited to approximate the range of maps
that are low-rank; Examples: local solution spaces in space or time
o Probabilistic a priori error bound/Numerical experiments for local
solution in space: convergence rate is only slightly worse compared to

the optimal rate (factor /n)
e required number of local solutions of PDE scale (roughly) with size of
the reduced space; Numerical experiments: faster than Lanczos

Thank you very much for your attention!
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Comparison with Krylov subspace methods

randomized methods Krylov subspace methods
computational | stage A: Tpue(k + ne) + O(k*m)
costs stage B: Toue(k) + O(k*(m + n)) | ideally Toue(k) + O(k*(m + n))
stability inherently stable inherently unstable
parallelizable yes no
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Numerical experiments: Linear elasticity with dim(P) = 20

» Consider —div(E(m)C : e(u(m))) =f in Q
with
e C stiffness and ¢ strain tensor
o vertical unitary linear forcing f (red
arrows)
e zero Dirichlet boundary conditions at ||||

» E(m): log-normally distributed random field
on , use truncated Karhunen-Loéve
decomposition with 20 terms

» We use a tensor-based model reduction
method (PGD) and estimate the relative
root mean square error

K Smetana (k.smetana@utwente.nl) Localized Model Order Reduction
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Steering the (primal) model reduction approximation

10°

107!

1072

1073

1074

— Exact error

- - - Residual A}}

— Stagnation A’xf% with k=1

—— Random dual (K=3, rank=1)
Exact random dual

— Exact error

- - - Residual A4}

—— Stagnation A;‘:i with k=3

—— Random dual (K=3, rank=3)
Exact random dual

— Exact error

- - - Residual A}}

—— Stagnation A;‘;ﬁ with k=5

—— Random dual (K=3, rank=>5)
Exact random dual

TR A

10°

107!

TR A

10°

TR AR

g 41077 91077
g 91077 91077

Il Il Il Il 10—4 Il Il Il Il 10—4 Il Il Il Il
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40

PGD iteration M

PGD iteration M

PGD iteration M

» A} dual norm of residual divided by dual norm of r.h.s. (no inf-sup)
> Af&ai: relative hierarchical error estimator using k increments
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